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Decision heuristics in contexts 
integrating action selection 
and execution
Neil M. Dundon 1,2*, Jaron T. Colas 1, Neil Garrett 5, Viktoriya Babenko 1, Elizabeth Rizor 1, 
Dengxian Yang 3, Máirtín MacNamara 4, Linda Petzold 3 & Scott T. Grafton 1

Heuristics can inform human decision making in complex environments through a reduction of 
computational requirements (accuracy-resource trade-off) and a robustness to overparameterisation 
(less-is-more). However, tasks capturing the efficiency of heuristics typically ignore action proficiency 
in determining rewards. The requisite movement parameterisation in sensorimotor control questions 
whether heuristics preserve efficiency when actions are nontrivial. We developed a novel action 
selection-execution task requiring joint optimisation of action selection and spatio-temporal skillful 
execution. State-appropriate choices could be determined by a simple spatial heuristic, or by more 
complex planning. Computational models of action selection parsimoniously distinguished human 
participants who adopted the heuristic from those using a more complex planning strategy. Broader 
comparative analyses then revealed that participants using the heuristic showed combined decisional 
(selection) and skill (execution) advantages, consistent with a less-is-more framework. In addition, the 
skill advantage of the heuristic group was predominantly in the core spatial features that also shaped 
their decision policy, evidence that the dimensions of information guiding action selection might be 
yoked to salient features in skill learning.

In naturalistic settings, our cognitive architecture for making goal-oriented decisions typically resolves an eco-
logical utility problem, integrating both extrinsic and intrinsic dynamics. Extrinsically, selected actions should 
maximise reward capture in line with a complex external state—a tennis player serving the ball might need to 
select between a fast serve down the centre of the court, or a slower sliced serve toward the outer tram lines. They 
might choose one of these two actions by incorporating multiple state parameters, such as how lateral and how 
far back the opponent is standing, in addition to features such as the opponent’s speed, handedness, and so on. 
Each additional parameter allows them to more precisely plan and compare simulated outcomes, and select the 
serve most likely to get past their opponent. However, high dimension external states likely favour some man-
ner of decision heuristic, i.e., where actions are selected using a subset of all available external state information 
(e.g., when the opponent is closer to the outer tram line, use the fast serve down the centre, and vice versa). 
Behavioural evidence verifies that a human decision policy can span different levels of planning complexity, with 
emerging neural evidence further suggesting that the brain harbours separate neural controllers for heuristics1.

The logic underscoring heuristic adoption is at least two-fold. Heuristics first offer a trade-off between accu-
racy and available resources. Such resources might include, and are not limited to, dimensions such as time and 
effort2. That is, where exhaustive planning might exceed computational resources or decision deadlines, heuristics 
offer a potentially less laborious and/or faster means to achieve a proxy for optimal action-selection policy1–3. An 
alternative "less-is-more" rationale, inspired by machine learning principles, considers heuristics as the optimal 
means to avoid overfitting in uncertain environments. That is, in uncertain environments, a plan with too many 
parameters will likely pick up on stochastic noise and create more prediction errors across choices than a func-
tion that uses fewer parameters, even if the latter function produces a biased estimate4.

However, much like the broader field of value-based decision making, evidence that humans exploit heuristics 
has emerged predominantly in laboratory task contexts inspired by classic economic theory5 (although see work 
in sport sciences6,7 and visually-guided movement8). Such classic task contexts do not consider intrinsic dynam-
ics, such as skilled motor output, as a determining factor in reward yields. For example, in recent work1, simple 
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button presses in a virtual task emulated foraging outcomes that probabilistically imparted a positive (partial 
increase), negative (partial decrease) or nonlinearly negative (complete erasure) impact on ongoing reward scores; 
human participants adopted a heuristic stimulus-driven policy that primarily avoided the nonlinear outcome, 
consistent with accuracy-resource trade-offs. Meanwhile, the less-is-more principle has been empirically sup-
ported in forecasting contexts such as weather4, investments9 and sporting events10. Simple-action probabilistic 
emulations and forecasting can innovatively replicate much of the extrinsic reward-oriented cognitive challenges 
presented by dynamic naturalistic environments; however, they probe only one side of the ecological utility 
dilemma. Lost in both paradigm formats are additional dynamic cost dimensions associated with effort11,12, 
motor plasticity13,14, and a broader sense of agency15, all of which integrate with external factors in the ultimate 
utility of selected actions in a momentary situation16,17.

In the present work, we explore decision heuristics in line with an emerging field in human behavioural 
research that characterises the dynamic interplay between action selection and action execution5,18,19. Specifically, 
we investigate heuristic adoption by humans as they select state-appropriate actions in a "selection-execution 
context", i.e., not only is there a correct action for a given state, but the proficiency of that selected action 
subsequently scales the level of reward and generates independent intrinsic error distributions such as spatial 
and temporal motor skill. According to sensorimotor control theory, performance error in these dimensions 
can be reduced by increasing the parameterisation of movement, e.g., by implementing forward-models or 
simulations20–22. This raises the question: are decision heuristics still efficient when actions are nontrivial; or does 
the requirement of a skilled physical action instead preserve the value of complex planning? We additionally do 
not know how decision heuristics relate to individual differences in skill. On the one hand, higher skill should 
improve both the time to generate, and the subsequent predictive utility of parametrising an impending action. In 
this case, higher-skilled individuals might be more likely to inform action choices with complex plans. However, 
an alternative prediction stems from the computational underpinnings of how motor learning evolves. Here, 
the commonly held view is that thorough deliberation dominates early in motor learning23, presumably while 
skill levels are also at their lowest. The consequence of motor learning is likely a shift from low to high skill in 
tandem with a shift from situational deliberation to less intensive (and more heuristic-like) draws from a cache of 
motor-memory strategies23,24. Across individuals, therefore, we might observe a relation whereby higher-skilled 
individuals might be more inclined to inform action choices with heuristics.

To address these outstanding questions, we developed a novel task, where trialwise reward required joint 
optimisation of action selection (between two possible actions) and the subsequent execution of those actions 
(selection-execution task). We describe the task here in detail to provide the reader with an intuition for how 
computational modeling can identify participants using heuristics that overlap with solutions derived from more 
complex planning. The task essentially tests if participants perform in a goal-oriented manner by situationally 
accepting higher motor execution costs to achieve higher reward. Each trial involves selecting one of two com-
puter cursors (that displace in different directions) to navigate from a starting position to a goal (start-goal, ‘SG’ 
pair) as efficiently as possible (see Fig. 1a,b). One cursor imparts a higher motor execution cost via an incongru-
ent key mapping (Fig. 1c). However, reward on each trial depends on the level of fuel conserved, requiring the 
correct choice of cursor and thereafter skilful navigation in terms of both spatial skill and temporal control of 
non-linear acceleration (Fig. 1d). SGs vary in terms of how well-suited they are to each cursor, with more ‘dif-
ficult’ choices therefore arising when an SG is similarly suited to both (Fig. 2e).

The suitability of a cursor to an SG can be guided by a simple heuristic that bases choice on a scalar value: 
the angle created by the SG and the nearest displacement vector of each cursor ("offset", Fig. 2a). Here, the more 
suitable cursor on a given SG is simply the one creating the smallest angular offset. Alternatively, participants 
might not use the angular heuristic alone and instead incorporate more complex planning into their action 
selection. Each cursor can travel in only three directions, meaning that cursors often need to perform some 
manner of segmented or “zig-zag” route to solve each SG. Thus, participants might have considered the impact 
of the required segmental paths when determining each cursor’s suitability. In other words, complex planning 
extends beyond the heuristic by additionally incorporating information such as the required action sequences, 
or predicted reward outcomes, into action selection (we operationalise complex planning more formally in the 
methods and results; see also Fig. 2b).

We designed the task such that for each SG, the heuristic policy ultimately leads to the same recommended 
choice (selection) as any policy that also includes complex segmental planning, in order to ensure that both strate-
gies result in similar action-execution requirements. However crucially, the degree of difficulty on each trial is 
different depending on whether a participant is using the heuristic or a complex planning policy. In other words, 
on some trials, an individual who is exploiting the heuristic will experience higher decision difficulty selecting a 
cursor than an individual using more complex planning and vice versa (Fig. 2f,g). Our computational approach 
to classifying participants as using either the heuristic or more complex planning centred on this strategy-
specific emergence of choice difficulty, i.e., when a participant encountered decision difficulty. For example, if 
a participant showed increased signs of decision difficulty when the heuristic suggested more parity between 
cursors (i.e., similar angular offsets), to a greater extent than when a more complex plan suggested parity (i.e., 
routes with similar sequence requirements or reward outcomes), they were classified as likely using the heuristic.

To characterise decision difficulty emerging through qualitatively different planning styles, we incorporated 
the drift–diffusion model (DDM) into our computational modeling framework. The DDM, which has revealed 
comprehensive accounts of decision formation in both perceptual25–28 and goal-oriented29–33 contexts, formalises 
two-alternative action-selection deliberation as a gradual process of evidence accumulation toward one of two 
action-deterministic boundaries. The rate of evidence accumulation (also known as the "drift rate") is lower for 
more difficult decisions, such that easy decisions will likely have a much higher drift rate than more difficult ones 
(see schematic in Fig. 2e). In our analysis we exploited this relation between difficulty and drift rate to identify 
participants’ strategies. I.e., if a participant is using the heuristic strategy, their data will be better fitted by a DDM 
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that allows two drift rates, one each for high and low difficulty trials, where difficulty is scored by the heuristic 
strategy (Fig. 2e, middle and right panel). However, if a participant is using more complex planning, their data 
would instead be better fitted by a DDM that again allows two drift rates, however for high and low difficulty 
trials as identified by more complex planning.

We therefore compared which of two DDMs (heuristic vs planning modulation of drift rate) best fitted each 
participant’s data. To then verify our model classifications, we exploited the characteristics of a separate DDM 
parameter—boundary separation. This parameter enumerates the degree of evidence that an individual requires 
before executing a decision. Given that complex planning inherently requires more bits of information, we 
therefore expected that participants identified (by drift rate modulations) as employing more complex planning 
would additionally show credibly larger boundary separation compared to those using the heuristic.

After classifying and verifying participants as likely using the heuristic or a more complex style of planning, 
we could then ultimately probe our core hypotheses regarding (i) whether heuristics are still efficient when 

Figure 1.   Action selection-execution task (boatdock) outline. Task tests if participants perform in a goal-
oriented manner by situationally accepting higher motor execution costs to achieve higher reward. a On each 
trial, participants first select one of two cursors and then pilot that cursor from a start to a goal (start-goal 
pairing; SG). b Each cursor can accelerate in three unique directions, making some cursors more suitable to 
some SGs due to reduced direction changes. c Position of index (I), middle (M) and ring (R) finger of right hand 
on throttle buttons throughout the experiment, and cursor-specific throttle-vector mapping. One cursor imparts 
a higher motor execution cost with incongruent mapping with respect to finger position (in this case the blue 
cursor, but cursor colour is counterbalanced across subjects). Fuel burns any time a throttle is pushed down. 
Each trial allows six cumulative seconds of throttling before fuel depletes. d Throttle time linearly burns fuel, but 
nonlinearly increases displacement. Faster displacement is therefore more fuel efficient, however, a maximum 
dock displacement imparts additional temporal control requirements. e Successful docks yield a reward 
contingent on fuel conservation. This requires jointly maximising cursor choice for a given SG (action selection) 
in addition to spatial and temporal skill (action execution). Trials containing catastrophic errors—running 
out of fuel, leaving the grid, or docking above maximum displacement—yield no reward. f Schematic of two 
similar SGs with the same cursor but different performance dynamics. Three horizontal lines in each panel chart 
activity over time separately for each vector, while each vortex relates to a single throttle pulse. Top panel utilises 
fewer direction changes (marked with c1,…,cn), reaches a higher maximum displacement (depicted by diameter 
of largest vortex) and yields higher reward (depicted by colour). g Reward (depicted by colour), yielded on every 
successful trial across all participants (individual markers), is a joint function of spatial and temporal skill.
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selected actions are nontrivial and (ii) how decision heuristics relate to individual differences in skill. Regard-
ing the initial question, we first tested whether participants using the heuristic required fewer runs of trials to 
persistently make state-appropriate action selections, i.e., select the more suitable cursor for a given SG, and 
whether they obtained higher overall level of reward in the task. We next tested the relation between heuristics 
and individual differences in skill and explored whether participants using the heuristic differed in terms of how 
skilfully they performed the action-execution portion of our selection-execution task. Specifically, we indexed 
action-execution skill using both spatial and temporal error dimensions, and tested whether both the overall 
level of these skills, in addition to their learning trajectories across the task, differed between participants using 
the heuristic and participants using complex planning.

Results
Fifty-three healthy human participants performed 360 trials (six runs of 60) of a novel task framed as “boat dock-
ing” (Fig. 1), in which reward yields require joint optimisation of action selection and action execution. On each 
trial, participants select one of two cursors to pilot between a randomly drawn start-goal pairing (SG; Fig. 1a). 
Each cursor accelerates continuously in three unique directions (Fig. 1b), burning fuel any time an accelerator 
button (throttle—Fig. 1c) is down. One cursor imparts a higher motor execution cost via an incongruent key-
mapping (Fig. 1c). However, trialwise reward is contingent on fuel conservation, such that a selection policy that 
selects the cursor better suited to each SG, will yield higher reward. The two cursors accelerate with the same 
nonlinear function, and deplete fuel with the same linear function, i.e., faster displacement is more fuel efficient 
(Fig. 1d). A maximum docking displacement rule (Fig. 1d), imposing a speed limit on arrival, imparts additional 
temporal control demands. Thus, in addition to fewer direction changes (spatial error), greater temporal control 
maximises reward (Fig. 1f,g). Finally, participants receive no reward for "catastrophic errors" (Fig. 1e): when they 
run out of fuel, leave the grid, or attempt to dock above the maximum docking displacement.

Summary behaviour—all participants.  In general, participants followed task instructions and executed 
the task in a goal-oriented manner. In a series of separate summary Bayesian models we estimated the expected 
value ( E(x)) and highest density interval (HDI(x)) of group-level posteriors of key summary variables related 
to each participant’s task performance, that is, variables (such as median RT) that summarise across trials. At 
the group level, median reaction time to execute choices (median RT) was 1.70 s ( E(μ) = 1.70, HDI(μ) = [1.46, 
1.935]). Participants registered catastrophic errors on 14.6% of trials ( E(θ) = 0.146, HDI(θ) = [0.141, 0.151]). 
Participants displayed a preference (i.e., credibly above 50%) for the congruent cursor, selecting it on 62.3% of 
trials ( E(θ) = 0.623, HDI(θ) = [0.616, 0.630]), confirming that it imparted a lower cost relative to the incongruent 

Figure 2.   Action-selection strategy identified by DDM framework. a-b A heuristic selects the cursor with 
a displacement vector with the least angular offset to the start-goal (SG) vector. Complex planning (route-
planning) selects the cursor based on cursor-specific reward projections, i.e., incorporating additional spatial 
and/or temporal parameters into cursor evaluation over the heuristic. c Strategy-specific cursor suitability 
is imperfectly correlated across all trials from all participants. Hotter colours describe greater Euclidean 
distance between S and G. d Reaction time (RT) for action selection is greater on SGs where strategies ascribe 
equivalent suitability to both cursors. Each marker is the mean of seven RT bins after sorting all participants’ 
trials by relevant strategy values. Error bars depict the standard error of the mean (S.E.M.) in each RT bin. 
e DDM framework. A noisy evidence accumulation process terminates at a decision criterion (boundary). 
We hypothesised that difficulty arising in our task would modulate the rate of evidence accumulation (drift 
rate μ). Depending on what strategy (heuristic or complex planning) a participant was using to make action 
selections, we’d see greater modulation of their drift rate by difficulty arising from that strategy. For each 
participant’s choice and RT data, two target models allowed separate drift rates μ1 and μ2 for high and low 
difficulty, respectively as per heuristic and route-planning strategy. There are equal trial counts in each bin 
for each model (~ 72 per participant per bin) by partitioning feature spaces non-uniformly (right panel). This 
panel also depicts how different drift rates will map onto different regions of each strategy’s cursor-suitability 
scores, i.e., scores reflecting greater cursor similarity (hi difficulty) will be assigned μ1, while scores reflecting 
more obvious choices (lo difficulty) will be assigned μ2. f Example trials for each cursor and difficulty where 
difficulty agreed between the heuristic and route-planning strategies. g Example trials for each cursor and 
difficulty where difficulty disagreed between the heuristic and route-planning strategies. In panels f and g, 
difficulty is normalized for cross-strategy comparison (lower bars); more rightward values reflect fewer trials 
(%) above that difficulty h–i three groups of participants emerged from modeling, based on whether their drift 
rate was modulated by heuristic (n = 14) or route-planning difficulty (n = 19), or whether they were best fitted 
by a null model (n = 20). A scaled schematic of the DDM profile estimated for the heuristic and route-planning 
(route) groups. j Comparison of DDM parameters between heuristic and route groups consistent with the latter 
integrating additional information into decision formation. Group’s differed in the sensitivity metric S = (μ1 + μ2)/
(2B(1 +|bC|)), primarily due to route group having a credibly higher boundary (B). Route group’s bias (bc) was 
credibly above 0, indicating a bias away from the high-cost cursor. All parameters expressed in arbitrary units, 
except t0 (in seconds). t0 and S parameters are aligned with the right axis. Boxes and thin lines respectively 
represent the interquartile range (IQR) and highest density interval (HDI) of group-specific posteriors. (*0 
/∈ HDI(xheuristic-route)). k Group classifications verified independently of DDM parameters. Route group were 
uniquely slower to select the congruent cursor on routes requiring a multiple-segment route, where complex-
planning demands likely become disproportionately greater than heuristic demands. Effect was not present in 
incongruent trials, see results. (*p < 0.01, Tukey-corrected). Vertical lines are S.E.M.

◂
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cursor. However, notwithstanding this preference, participants were goal-oriented in their behaviour, selecting 
the cursor best suited to a given SG on 61.8% of trials ( E(θ) = 0.618, HDI(θ) = [0.611, 0.624]), i.e., above chance 
level (50%).

Action selection using heuristic vs complex planning.  To probe our core hypotheses, we first needed 
to identify participants behaving in a goal-oriented manner and classify them on whether they were using the 
heuristic or more complex planning to inform action selection. In general, goal-oriented behaviour in our task 
requires participants to determine how suitable each cursor is for a given SG, during action selection (Fig. 1b), 
notwithstanding the higher motor execution cost of the incongruent cursor. To model how participants perform 
this evaluation, i.e., whether they likely used a heuristic or complex planning, we first scored each trial using 
two continuous measures. One measure enumerated the suitability of either cursor for its SG as derived by the 
heuristic, and the other as derived by complex planning. For the former, we designed our task such that the 
simplest policy to select suitable cursors for each SG involved the following heuristic: select the cursor with a 
vector subtending the smallest angular offset to that of the SG, i.e., incorporating only a single piece of spatial 
information into each choice (heuristic; Fig. 2a). We therefore scored each trial using a continuous "offset" met-
ric of how suitable either cursor was for its SG, as per this heuristic. This score ranged from 0° to 60°, where 0° 
was a trial perfectly suited to the incongruent cursor and 60° was a trial perfectly suited to the congruent cursor. 
Thus, a participant using the heuristic to evaluate cursors would encounter maximal “difficulty” on SGs where 
this offset metric approached 30° (Fig. 2a). Alternatively, participants had the option of incorporating additional 
complex action planning into their choices beyond the spatial heuristic. Such planning might require additional 
parameters over the heuristic, such as the spatial coordinates of simulated segmented routes, and/or the timing 
of pulses required in a simulated action sequence. In order to score each trial using a single continuous metric 
of how suitable either cursor was for its SG, as per more complex planning, we used a framework inspired by 
optimal control ("route-planning"; Fig. 2b). At its optimum, complex planning in each SG would compare the 
route yielding the most reward with each cursor, and select the cursor with the highest value. In other words, 
projections of cursor-specific reward (i.e., conserved fuel) reflect a summary of planning that incorporates both 
spatial and temporal action parameters beyond the heuristic. We hypothesized that participants using more 
complex planning, thereby incorporating more bits of information into action selection beyond the heuristic 
(be they spatial or temporal), would accordingly show modulations during action selection that more-closely 
tracked cursor-specific reward projections than the heuristic score. We first used simulations (see Supplemen-
tary Materials: Optimal route simulations) to determine the routes yielding the most reward with each cursor for 
each SG, and the reward projected by each. Subtracting optimal incongruent reward from optimal congruent 
reward results in "route-planning" scores ranging from approximately − 0.35 to 0.35 (where more positive values 
correspond to SGs better suited to the congruent cursor, and 1 corresponds to the starting fuel allocation on 
each trial). Thus, a participant selecting cursors using this strategy would encounter maximal “difficulty” on SGs 
with a route-planning score approaching 0. Note that the heuristic and route-planning scores always propose 
the same cursor for each SG, which ensures that action execution requirements are the same, regardless of which 
strategy a participant uses. However, importantly, the strategies are not perfectly correlated, due to additional 
nonlinear spatial and temporal information integrated into route-planning scores (Fig. 2c). This means that on 
some trials, difficulty will agree between the heuristic and route-planning strategy (Fig. 2f), but on other trials, 
difficulty will disagree (Fig. 2g). In other words, even if these strategies might not necessarily make diverging 
predictions about which cursor to select, certain selections will be less difficult, depending on an individual’s 
strategy. Across all participants, the reaction time (RT) for action selection was slower on more difficult trials, 
i.e., SGs where either strategy computed equivalent values for either cursor (heuristic = 30° or route planning = 0; 
Fig. 2d), verifying that both methods for scoring SG successfully captured modifications to behaviour arising 
from increasing difficulty.

DDM framework using drift rate modulations to classify participants’ action‑selection strat-
egy.  With each trial scored on one of two measures that could enumerate choice difficulty, we next fitted 
DDMs to (1) parse and later (2) verify the action-selection strategy of individual participants. The DDM (Fig. 2e) 
describes a noisy sequential sampling process that accumulates evidence at an average "drift rate" (μ) before 
reaching a decision criterion or "boundary" (B or -B for congruent or incongruent cursors, respectively). With 
a congruency bias bC favoring the congruent cursor where bC > 0, this process originates at a starting point bCB. 
Difficulty reduces the rate of evidence accumulation, which can be verified computationally when models con-
taining two drift rates (e.g., μ1 and μ2), mapping respectively onto decisions presenting a high or low degree of 
difficulty, provide better model fits (Fig. 2e). The first goal of our DDM framework was to distinguish people 
based on whether they used the heuristic or more complex planning to guide decisions (Fig. 2a,b). We formally 
considered a participant to be using a specific strategy if their drift rate was best modulated by difficulty arising 
from that strategy. To each participant’s set of trialwise choices and RTs we fitted three DDMs; a heuristic model, 
a route-planning model and a null model. Each model contained at least three free parameters: boundary B, con-
gruency bias bC, and nondecision time t0. The null model was constrained such that μ1 = μ2 = 0, i.e., an arbitrary 
drift rate indicating no deliberation over action selection. The heuristic and route-planning models had two free 
parameters, μ1 and μ2, i.e., allowing two separate drift rates that mapped respectively onto high or low difficulty 
trials. The heuristic model divided trials into equal bins reflecting high and low difficulty as calculated by offset 
scores. The route-planning divided trials into equal bins reflecting high and low difficulty as calculated by route-
planning scores (see Action selection using heuristic vs complex planning; see Fig. 2a,b). Based on model fits34 
after adjusting for model complexity according to the Akaike information criterion with correction for finite 
sample size (AICc)35,36, we confirmed that 14 participants’ choice and RT data were best fitted by the heuristic 
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model, 19 participants’ data were best fitted by the route-planning model and 20 participants were best fitted by 
the null model, indicating neither strategy-specific difficulty modulated the rate of their evidence accumulation 
(Fig. 2h–j; Table 1). Similar results (79% agreement) were obtained using a twofold cross-validation procedure 
(Supplementary Table 5); individual AICc scores are included in Supplementary Table 6. We hence refer to these 
three groups respectively as the "heuristic", "route" and "nonplanner".

Summary behaviour—group specific.  We next looked at summary behaviour separately for each 
group, using Bayesian models that estimated the expected value ( E(x)) and highest density interval (HDI(x)) 
of posteriors that summarise group-specific estimates of key summary variables related to task. These group-
specific estimates are presented in Table 1. Note that for the remainder of our results, anywhere we determined 
a difference between posteriors we required "credible evidence" (i.e., the highest density interval of one pos-
terior minus the other to not subtend zero). Looking first at the differences between the heuristic and route 
groups, we observed that the heuristic group made the state-appropriate choice on a credibly higher number 
(~ 4%) of trials ( E(θheuristic) = 0.718, E(θroute) = 0.679, E(θheuristic-route) = 0.039, HDI(θheuristic-route) = [0.023, 0.056]), 
which co-occurred with a credibly smaller preference for selecting the congruent cursor ( E(θheuristic) = 0.541, E
(θroute) = 0.576, E(θheuristic-route) = − 0.035, HDI(θheuristic-route) = [− 0.017, − 0.052]). However we observed no cred-
ible difference between these groups in terms of their median RT ( E(μheuristic) = 1.83, E(μroute) = 2.28, E(μheuristic-
route) = − 0.444, HDI(μheuristic- route) = [− 0.975, 0.086]), nor their likelihood of registering a catastrophic error ( E
(θheuristic) = 0.118, E(θroute) = 0.128, E(θheuristic-route) = − 0.009, HDI(θheuristic-route) = [− 0.020, 0.001]). These initial 
summary comparisons suggest that in terms of discriminating the heuristic and route groups, choice appro-
priateness was a more telling behavioural feature than either the time needed to execute choices or frequency 
of catastrophic performance errors during the action-execution portion of each trial. Summary models further 
confirmed that the nonplanner group (i.e., the third group identified by our DDM as not performing any SG-
appropriate deliberation) were not behaving in a goal-oriented manner as they did not credibly depart chance in 
terms of choice ( E(θ) = 0.488, HDI(θ) = [0.477, 0.500]) and showed a strong bias toward the congruent cursor ( E
(θ) = 0.726, HDI(θ) = [0.716, 0.736]). (Despite demonstrating no evidence of state-appropriate action selection, 
this nonplanner group nonetheless exhibited skill learning during the execution portion of our task (Fig. 3b–d), 
improving with both cursors in terms of reward yield and spatial precision, and with temporal dynamics with 
the congruent cursor only. For additional information on this group, we refer the reader to Table 1, Fig. 3, Sup-
plementary Table 1, and a supplementary section summarising their parametric and skill findings, as well as 
how they might be using a suboptimal heuristic of exploiting the congruent cursor (Supplementary Materials: 
Nonplanner group)). The remaining portion of the following results section will primarily focus on participants 
who behaved in a goal-oriented manner, i.e., we will compare and contrast the heuristic and route groups more 
thoroughly, in terms of DDM parameters, choice behaviour and skill.

Table 1.   Group-specific posteriors for variables and DDM parameters and model fit scores. E(x) = expected 
value of posterior x, HDI(x) = highest density interval of posterior x. Credible difference between a given 
posterior and that of the heuristic, route and nonplanner group is respectively superscripted h, r, and n. Values 
for p (congruent cursor), p (appropriate cursor) and p (catastrophic error) relate to group-level probability 
(θv,g: see methods) from a summary binomial model. Values for all other variables and parameters describe 
group-level mean (Μv,g: see methods) from a summary Gaussian model. Sensitivity (S) is measured as (μ1 + μ2)/
(2B(1 +|bC|)). Model fits assessed with residual deviance (D2) where higher scores reflect better model fits 
across a group’s participants relative to the null model.

Heuristic (n = 14) Route (n = 19) Nonplanner (n = 20)

E(x) [HDI(x)] E(x) [HDI(x)] E(x) [HDI(x)]

Variables

 p(appropriate cursor) 0.718 [0.706, 0.730]r,n 0.679 [0.668, 0.690]h,n 0.488 [0.477, 0.500]h,r

 p(congruent cursor) 0.541 [0.528, 0.555] r,n 0.576 [0.564, 0.587] h,n 0.726 [0.716, 0.736] h,r

 median RT (s) 1.83 [1.485, 2.191]n 2.28 [1.873, 2.672]n 1.06 [0.779, 1.351]h,r

 p(catastrophic error) 0.118 [0.110, 0.126]n 0.128 [0.120, 0.135]n 0.178 [0.169, 0.186]h,r

DDM parameters

 Sensitivity—S 0.447 [0.330, 0.564]r 0.255 [0.192, 0.316]h 0

 Drift rate, hi difficulty—μ1 0.046 [0.030, 0.062] 0.029 [0.019, 0.040] 0

 Drift rate, lo difficulty—μ2 0.073 [0.054, 0.093] 0.058 [0.044, 0.073] 0

 Boundary—B 0.125 [0.108, 0.143]r 0.151 [0.134, 0.168]h,n 0.106 [0.065, 0.146]r

 Congruency bias—bC 0.070 [− 0.024, 0.164]n 0.147 [0.059, 0.236] 0.267 [0.127, 0.405]h

 Nondecision time—t0 (s) 0.780 [0.585, 0.977]n 0.811 [0.666, 0.961]n 0.522 [0.380, 0.661]h,r

 Model fits D2 D2 D2

 Heuristic 238.8 171.2 0.1

 Route-planning 202.0 213.0 0.2
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Verifying DDM classification of heuristic and route groups with DDM parameters.  We next 
tested whether the group classifications ascribed by model fits based on strategy-specific drift rate modulation 
were consistent with parameter values from the DDM. We specifically hypothesized that given complex plan-
ning’s incorporation of more bits of information into decisions, the route group would demonstrate larger bound-
ary separation, i.e., consistent with them requiring more evidence to enact choices. In a single Bayesian model 
(see Methods) we estimated and compared group-specific means for each DDM parameter listed in Table 1. As 
an overall measure of performance, this model first compared the route and heuristic groups on the sensitivity 
metric S = (μ1 + μ2)/(2B(1 +|bC|)), which combines both drift rates, congruency bias and the boundary. This meas-
ure enumerates the drift rate across all trial types (i.e., the average of μ1 and μ2) which is then inversely scaled 
by larger boundary separation and bias. A high value, therefore, reflects high sensitivity to decision-relevant 
information, i.e., a high rate of evidence accumulation combined with little bias and low boundary separation. 
We observed credible evidence of group difference ( E(Sheuristic) = 0.447, E(θroute) = 0.255, E(θheuristic-route) = 0.192, 
HDI(θheuristic-route) = [0.056, 0.322], Table1, Fig. 2j). Lower sensitivity amongst the route group is consistent with 
their employed policy integrating more bits of information, as this metric is low when decision formation is 
jointly constrained by a low rate of evidence accumulation and a larger boundary (Fig. 2h,i). Comparing each 
parameter separately, we observed that this effect was primarily driven by the degree of boundary separation, 
consistent with our hypothesis. The route group had a credibly higher boundary (B) than the heuristic group 
( E(Bheuristic) = 0.125, E(Broute) = 0.151, E(Bheuristic-route) = − 0.025, HDI(θheuristic-route) = [− 0.050, − 0.002], Table1, 
Fig. 2j), but they did not have credibly different drift rates, either for high difficulty SGs ( E(μ1heuristic) = 0.046, 
E(μ1route) = 0.029, E(μ1heuristic-route) = 0.017, HDI(μ1heuristic-route) = [− 0.002, 0.036], Table1, Fig. 2j) or for low dif-
ficulty SGs ( E(μ2heuristic) = 0.073, E(μ2route) = 0.058, E(μ2heuristic-route) = 0.015, HDI(μ1heuristic-route) = [− 0.001, 0.040], 
Table1, Fig. 2j). Also of note, we observed a credible bias toward the low cost action amongst the route group ( E
(bc,route) = 0.147, HDI(bc,route) = [0.059, 0.236], Fig. 2j), but not amongst the heuristic group ( E(bc,heuristic) = 0.070, 
HDI(bc,heuristic) = [− 0.024, 0.164], Fig.  2j). Together, these findings first provide parametric plausibility to the 
group classifications ascribed by our DDM, i.e., that the route group integrated more complex planning informa-
tion into their choices. Secondly, the findings suggest that complex planning might be related to a stronger bias 
away from high-cost action, notwithstanding an overall tendency toward goal-oriented behaviour.

Verifying DDM classification of heuristic and route groups with segmentation interac-
tion.  Our fundamental modeling assumption is that the route and heuristic groups are using qualitatively 
different planning strategies, and, for example, don’t simply differ in terms of general RT. In the above verifica-
tion procedure, we compared participants’ parameters that were fitted in the same DDM that also ascribed the 
group classifications (via strategy-specific drift rate modulations). While the group difference in the boundary 
parameter was particularly consistent with our specific hypothesis predictions, we nonetheless sought additional 
evidence to verify the model classifications using data completely independent from the DDM. Specifically, 
we sought to identify moments in the task where the groups performed comparably in terms of RT (suggest-
ing likely similarity in the computational requirements of their strategies), and other moments where their RT 
diverged (suggesting likely divergence in the computational requirements of their strategies). One such feature 
that we hypothesised would reveal such an interaction is the level of route segmentation in the optimal solu-
tion of SGs. In terms of information bits, the heuristic and complex planning should be most similar for SGs 
where the optimal solution is a single linear route from the start to the goal (single segment). However, for 
SGs where the optimal solution requires some kind of turn or zig–zag (multiple segment), complex-planning 
demands likely become disproportionately greater than heuristic demands, as the heuristic strategy can enumer-
ate cursor-suitability using a single scalar value that is impervious to additional preparatory planning in action 
sequences. We therefore tested whether median RT showed an interaction between group (route, heuristic) 
and segmentation in SG solutions (single, multiple; see Fig. 2k). Looking first at SGs that were better suited 

Figure 3.   Heuristic group reaches state-appropriate choice more quickly and shows a spatial-specific skill 
advantage. a Consistent with classic decision-heuristic models, low dimensional planning aligns with faster 
trajectories toward state-relevant (appropriate) choice. Hierarchical binomial model of choice behaviour 
demonstrates trade-off between the expediency and profundity of policy formation; heuristic group exceeded 
chance by run 2, earlier than route group (run 4). †reflects runs where HDI of group-level θ posterior did 
not subtend 0.50, i.e., where group-level proportion of choices were credibly above chance. b–d Skill and skill 
learning suggest the dimensions of information guiding action selection are yoked to salient features in skill 
learning. Collapsing group-level posterior means across runs (skill), heuristic group yielded more reward with 
the high-cost cursor (b, histograms bottom panel), driven by superior spatial skill, i.e., the likely dominant 
feature in their action-selection policy (c, histograms bottom panel), with no route-heuristic difference in 
temporal skill (d, histograms). Asterisk relates to credible difference between route and heuristic groups, 
i.e., that the HDI of the deterministic distribution of their difference (heuristic-route) does not contain 0. 
Additionally, while route and heuristic group demonstrated skill learning in terms of reward and spatial skill 
(b–c, line plots), route group uniquely demonstrated learning in the temporal domain, a likely feature in their 
action-selection policy (d, line plots). Boxes and thin lines in line plots respectively represent IQR and HDI of 
hierarchical posteriors constraining individual-participant posteriors for a given measure, run and cursor. In 
both histograms and line plots, reward is the proportion of fuel preserved per trial (higher better), spatial is the 
number of direction changes (fewer better) and temporal is the distance-normalized difference between max 
and final velocity (higher better). Time-on-task (skill learning) effects estimated from deterministic regression 
models fitted across draws from each run’s posterior; credible (0 ∉ coefficient HDI) effects depicted by either a 
dashed (logarithmic) or solid (linear) line. Absence of any line reflects noncredible time-on-task effect.

◂
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to the congruent cursor, a two-way mixed ANOVA of median RT returned a significant interaction between 
group and segmentation (F(1, 31) = 4.66; p = 0.039; Fig. 2k), underscored by a significant difference in median RT 
between single and multiple-segment routes for the route group (t(31) = 4.04; ptukey = 0.002) but not the heuristic 
group (t(31) = 0.623; ptukey = 0.924), consistent with our prediction. The same ANOVA on SGs better suited to the 
incongruent cursor returned no significant main effects or interactions (all p-values above 0.065). This absence 
of any effects in contexts suited to the high-cost action may reflect a greater level of noise interacting with the 
signal of action-selection processes, i.e., additional biases against using the incongruent cursor or additional 
preparatory processes related to incongruent finger-mapping. Importantly, however, observing the predicted 
interaction at least in SGs suited to the congruent cursor reveals evidence independent of DDM parameters that 
the route and heuristic groups used qualitatively different planning strategies that differentially modulated RT 
depending on when their respective computational loads likely diverged.

Are heuristics still efficient in selection‑execution contexts?  After classifying and verifying partici-
pants as likely using the heuristic or a more complex style of planning, we next probed our core hypotheses, and 
first examined whether heuristics are efficient in a selection-execution context, i.e., when selecting nontrivial 
actions for execution. The remainder of the results section uses hierarchical Bayesian models that differ from the 
summary models above. The ensuing models allow for variance across trials with a hierarchy within the model 
itself. This hierarchical structure summarises trialwise measures within each participant with participant-level 
posteriors that were themselves constrained by a relevant hierarchical parameter. We further used separate hier-
archical parameters depending on the hypothesis-relevant space of the model, e.g., group-by-run (see Methods 
for specific parameterisation). We first tested a prediction consistent with the ’less-is-more’ hypothesis, i.e., that 
people using heuristics would learn appropriate choice policy more quickly. Specifically, we tested whether par-
ticipants using the heuristic required fewer runs of trials to persistently make state-appropriate action selections. 
For this, we summarised choice appropriateness in each of the six runs of the task using a hierarchical binomial 
model. The model estimated the expected value ( E(x)) and highest density interval (HDI(x)) of choice appropri-
ateness (θ) across a two-dimensional space described by group (heuristic, route, nonplanner) and run (1–6), i.e., 
group-specific choice appropriateness for each run (Fig. 3a). Consistent with the less-is-more principle, the heu-
ristic group demonstrated above-chance (0.50) choice by the second run of trials ( E(θheuristic,run2) = 0.698, HDI(θ 
heuristic,run2) = [0.501, 0.898]), while in contrast, the route group’s choices did not credibly depart chance until the 
fourth run of trials ( E(θroute,run4) = 0.712, HDI(θ heuristic,run2) = [0.533, 0.882]; Fig. 3a, see Supplementary Table 1 
for each group-by-run θ HDI). Thus, the heuristic group had a relative advantage of approximately 120 trials in 
reaching above-chance appropriateness with their choices. This finding corroborates the summary models above 
related to choice appropriateness, showing that heuristics are efficient in selection-execution contexts and pos-
sibly reflect a trade-off between how quickly a policy produces state-relevant choices, and the dimensionality of 
constituent planning.

Next, in terms of reward-specific value, we tested whether participants using the heuristic obtained a higher 
overall level of reward in the task. We first scored each trial in terms of reward, i.e., the proportion of the fuel 
tank conserved. We next summarised reward obtained across the task using a hierarchical Gaussian model. The 
model estimated the expected value ( E(x)) and highest density interval (HDI(x)) of average reward (μ) across a 
three-dimensional space described by group (heuristic, route, nonplanner), run (1–6), and cursor (congruent, 
incongruent), i.e., the credible ranges of group-specific reward, separately for each run, and separately again for 
each cursor. Figure 3b and Supplementary Table 1 contain each group-by-cursor-by-run μ estimate in addition 
to estimates collapsed across run. This model revealed that the heuristic group garnered higher reward yields 
across the task, however only with the high-cost (incongruent) cursor (Fig. 3b). Merging posteriors across 
runs, the route and heuristic groups showed no credible differences in yielded reward (proportion of fuel con-
served) using the congruent cursor ( E(μheuristic) = 0.550, E(μroute) = 0.554, E(μheuristic-route) = − 0.004, HDI(μheuristic-
route) = [− 0.025, 0.017], Fig. 3b), however the heuristic group amassed credibly higher yields (~ 3% higher per 
trial) using the incongruent cursor ( E(μheuristic) = 0.548, E(μroute) = 0.517, E(μheuristic-route) = 0.031, HDI(μheuristic-
route) = [0.006, 0.055], Fig. 3b). This reward advantage is an additional indication that heuristics are valuable in 
selection-execution contexts, consistent with the less-is-more principle. However, the cursor specificity of the 
effect additionally suggests that people employing the heuristic were not globally proficient across all aspects of 
the task, and instead had a reward advantage that was more prominent when employing high-cost action. This 
finding is additionally consistent with findings from our summary model above revealing the route planner 
group’s DDM bias away from selecting the congruent cursor.

Comparisons of skill between route and heuristic groups.  We have so far verified that a DDM 
framework parsimoniously distinguishes people on their likely use of heuristics or complex planning during 
action selection in a selection-execution task. Analyses regarding our first core hypothesis further suggest that 
those using the heuristic demonstrated advantages with respect to both decision policy formation and reward 
outcomes, consistent with the less-is-more principle. These analyses additionally suggest that action cost (i.e., 
dynamics involving the incongruent cursor) might be mediating the separation of these groups in some way. 
We next tested our second core hypothesis, i.e., how decision heuristics relate to individual differences in skill. 
We specifically tested two intrinsic skill dimensions underscoring reward outcomes during action execution—
spatial and temporal skill. Spatial action execution was tracked by the number of direction changes on each 
trial, i.e., lower values reflect better performance on this measure which is modulated specifically by spatial 
precision. Temporal action execution was defined as the difference between the cursor’s maximum and final 
velocity (normalised by SG distance), i.e., higher values reflect better performance on this measure that indexes 
proficiency in temporal task demands requiring high max-velocities for more fuel-efficient displacement, while 
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arriving at the goal below the maximum threshold (Fig. 1d), and ideally as low as possible to further preserve 
fuel. We summarised performance in these two variables across the task using two separate hierarchical Bayes-
ian models (Poisson for spatial skill, Gaussian for temporal skill), in each case using the same model space used 
above for reward. Each model estimated the expected value ( E(x)) and highest density interval (HDI(x)) of 
its relevant skill (μ) across a three-dimensional space described by group (heuristic, route, nonplanner), run 
(1–6), and cursor (congruent, incongruent), i.e., the credible ranges of group-specific skill, separately for each 
run, and separately again for each cursor. Figure 3c,d and Supplementary Table 1 contain each group-by-cur-
sor-by-run μ estimate for each measure in addition to estimates collapsed across run. In terms of spatial skill, 
and consistent with our finding regarding reward advantage, the heuristic group again showed an advantage 
across the task, but only when using the incongruent cursor. Collapsing across runs, we observed no credible 
between-group difference with the congruent cursor ( E(μheuristic) = 1.53, E(μroute) = 1.52, E(μheuristic-route) = 0.009, 
HDI(μheuristic-route) = [− 0.142, 0.159], Fig. 3c), but credibly fewer direction changes amongst the heuristic group 
with the incongruent cursor ( E(μheuristic) = 1.58, E(μroute) = 1.76, E(μheuristic-route) = − 0.181, HDI(μheuristic-route) = [− 
0.358, − 0.011], Fig. 3c). In terms of temporal skill, we observed no credible differences between the groups with 
either cursor. Collapsing across runs, we observed no between-group differences, with the congruent cursor ( E
(μheuristic) = 0.671, E(μroute) = 0.690, E(μheuristic-route) = − 0.020, HDI(μheuristic-route) = [− 0.056, − 0.018], Fig. 3d) or 
incongruent cursor ( E(μheuristic) = 0.710, E(μroute) = 0.677, E(μheuristic-route) = 0.031, HDI(μheuristic-route) = [− 0.007, 
0.068], Fig. 3d). Given that the heuristic group reached state appropriate choices more quickly (Fig. 3a; Supple-
mentary Table 1), i.e., they performed a higher volume of trials where their cursor selection theoretically reduced 
the need for direction changes, we re-ran the spatial skill model with trialwise direction changes adjusted by the 
optimal solution for the cursor selected for each given trial (i.e., observed direction changes—ideal direction 
changes). This model (see: Supplementary Materials—Hierarchical Poisson with choice-normalised spatial skill) 
returned identical results, confirming that notwithstanding their better choices, the heuristic group indepen-
dently demonstrated greater spatial skill while piloting the incongruent cursor. This finding informs our second 
core hypothesis by linking heuristics to higher levels of skill. However, the spatial-specific nature of the heuristic 
group’s skill advantage further suggests that heuristics might not be related to higher skill proficiency in a global 
sense, but instead related to selective advantage in a reduced set of dimensions. Given its spatial nature, it raises 
the question as to whether their selective advantage in action execution might additionally be related to their 
action-selection strategy; i..e, the heuristic contains primarily spatial information, while more complex planning 
likely included additional dimensions (i.e., temporal) information.

Time‑on‑task effects—skill learning.  The previous section focused on group-by-cursor differences in 
skill when collapsing across runs, i.e., overall task performance. We next probed an additional component of our 
second core hypothesis and tested whether the route and heuristic groups also differed in terms of “time-on-task” 
trajectories in cursor-specific action execution (skill learning). By time-on-task, we mean improvements across 
runs. In other words, with each additional run of the task performed, did summary estimates of participants’ 
cursor-specific skill change in a direction reflecting improvement in skill—that is, higher reward, fewer direction 
changes or higher temporal skill. We additionally tested if skill learning evolved either linearly or logarithmically, 
the latter to account for any changes in the rate of improvement37. For this, we took the uncollapsed (i..e, sepa-
rate run-by-run) posteriors from each group-by-cursor dyad in the above hierarchical models of reward, spatial 
skill and temporal skill and drew samples to perform deterministic regression models. These regression models 
tested whether these features evolved over the task in either a linear (βlin) or logarithmic (βlog) fashion, sepa-
rately for each group and cursor (linear and nonlinear time-on-task effects). Figure 3b–d depict whether skill 
evolved across features in a linear or logarithmic fashion, while each group-by-cursor time-on-task coefficient 
(linear and logarithmic) is included in Supplementary Table 1. These skill learning models revealed additional 
divergence between the route and heuristic groups. The route group’s skill learning encompassed a broad range 
of features, i.e., they showed either linear or logarithmic improvement with each cursor for reward (cong: E
(βlin) = 0.160, HDI(βlin) = [0.103, 0.218]; incong: E(βlog) = 0.564, HDI = [0.236, 0.897]; Fig. 3b), spatial skill (cong: 
E(βlin) = − 0.157, HDI E(βlin) = [− 0.211, − 0.105]; incong: E(βlog) = − 0.499, HDI = [− 0.728, − 0.262]; Fig. 3c) and 
temporal skill (cong: E(βlin) = 0.124, HDI = [0.043 0.205]; incong: E(βlin) = 0.134, HDI = [0.048, 0.217]; Fig. 3d). 
In contrast, the heuristic group only showed strong evidence of skill learning for reward (cong: E(βlin) = 0.144, 
HDI(βlin) = [0.058, 0.230]; incong: E(βlog) = 0.379, HDI(βlog) = [0.008, 0.763]; Fig. 3b) and spatial skill (cong: E
(βlog) = − 0.369, HDI(βlog) = [− 0.703, − 0.024]; incong: E(βlog) = − 0.392, HDI(βlog) = [− 0.744, − 0.035]; Fig. 3c), 
i.e., they demonstrated no credible skill learning with either cursor in the realm of temporal skill (Fig. 3d; all βlin 
and βlog HDIs subtend 0; see Supplementary Table 1). To corroborate this null result regarding temporal skill, 
we conducted a follow-up analysis. In summary, this nonparametric model compared how many individual 
participants in each group showed either linear or logarithmic time-on-task effects with temporal skill, i.e., a 
binomial design that could confirm different rates of skill learning between groups. We then performed a sum-
mary binomial model that computed group-specific proportions (θ) of participants that improved in temporal 
skill. This model confirmed that a higher number of participants in the route group improved relative to the heu-
ristic group, both using the congruent cursor (10/19 vs. 1/14; HDI(θroute-heuristic ) = [0.145, 0.647]) and using the 
incongruent cursor (10/19 vs. 0/14; HDI(θroute-heuristic ) = [0.068, 0.600]). This additional analysis confirmed that 
the route and heuristic groups diverged in the feature of temporal skill learning, with less evolution in temporal 
skill demonstrated by the latter group. This finding further informs our second core hypothesis investigating the 
relation between decision heuristics and individual differences in skill, and further supports the idea that skill 
dimensions underscoring action execution might be related to a person’s action-selection strategy. Specifically, 
these skill-learning models suggest participants using the primarily spatial heuristic showed less learning across 
the task in the temporal domain. The route group, who in contrast were more likely to be incorporating temporal 
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information into action selection, demonstrated credible learning in this dimension. Together with the above 
findings relating to the heuristic group’s overall superiority in spatial skill, these findings suggest that a yoked 
dimensionality might exist between planning and skill, i.e., in complex states, the number of features relevant 
(or not) for action-selection policy may predict the number of features most likely to undergo learning (or not) 
during action execution.

Discussion
At least two schools of thought lend plausibility to the idea that humans might achieve optimally efficient 
ecological yields by basing goal-oriented decisions on subsets of information available in complex states. On 
the one hand, if either time or computational resources are restricted, humans might pragmatically trade off 
state-optimal parameterisation for reduced processing requirements (accuracy-resource trade-off). On the other 
hand, decisions informed by fewer parameters are more robust to the influences of misleading stochastic noise 
(less-is-more principle). In either case, extant knowledge on decision heuristics stems predominantly from 
action-trivial tasks that obviate intrinsic skill proficiency in determining behavioural outcomes. The present work 
directly addressed this shortcoming. We developed a novel selection-execution task requiring joint optimisation 
of action selection (of state-appropriate low-cost or high-cost cursors) and action execution (controlling cursors 
proficiently). Focusing first on action selection, cursor-state suitability could be determined by either a simple 
spatial heuristic strategy or more complex planning involving additional (spatial or temporal) action parameters. 
Using a between-group DDM framework, that exploited strategy-specific modulation of the drift rate (evidence 
accumulation) parameter, we parsed a wide pool of human participants based on which planning strategy most 
likely accounted for their action selection strategy. Additional analyses corroborated the model classifications. 
Participants allocated to the route group (complex planning) were constrained by a higher decision criterion 
(boundary), and uniquely showed slower RT when planning segmental routes, consistent with the idea that they 
needed to incorporate more bits of information into their choices. This group also showed an enduring bias away 
from using the high-cost cursor.

After parsing participants on their likely decision strategies, we next investigated two core hypotheses. The 
first tested whether the efficiency of decision heuristics extends to action-execution contexts. Here, our find-
ings confirmed that in a task requiring exquisite spatio-temporal control of selected actions, decision heuristics 
nonetheless required fewer trials to achieve state-appropriate choice and aligned with higher overall reward 
yields. Next, we probed how decision heuristics relate to individual differences in skill, measuring the latter in 
terms of independent dimensions of spatial and temporal precision. Here, we observed that heuristic adoption 
aligned with better spatial skill with high-cost actions. Together with the route group showing a parametric bias 
away from the high-cost cursor, we interpret the combined data across our task’s action-execution contexts as 
unambiguously supporting heuristic adoption in higher-skilled participants.

These combined findings extend the remit of heuristics to include contexts involving nontrivial action and 
further propose that they primarily preserve efficiency through less-is-more principles. Specifically, partici-
pants using the heuristic showed combined decisional and skill advantages that would not be predicted under 
accuracy-resource trade-off principles. A core rationale of sensorimotor-based forward models of action selec-
tion is that efference copies and predicted sensorimotor costs provide improved efficiency and robustness in the 
face of noisy sensory-prediction errors20–22. A corollary is that low-skill individuals will struggle to accurately 
parameterise a complex action plan, increasing computational requirements during the planning phase and/or 
generating a high volume of online noise-driven corrective action during action execution38,39. In either case, 
accuracy-resource trade-off principles would predict heuristic efficiency under a compensatory model, i.e., that 
low-skill individuals are better served by adopting a simpler heuristic decision strategy that avoids fruitless 
deployment of computational resources.

Instead, under less-is-more principles, we propose that heuristic adoption in selection-execution contexts 
aligns with progress along motor-learning trajectories previously observed in forced-choice motor skill tasks 
(i.e., no selection required)23,24. Here, early in the acquisition of novel motor skills, internal models that simulate 
action outcomes can expedite learning in exchange for high computational cost23. As participants then amass a 
wider cache of state transitions and successful experiences, control shifts from deliberative model-based plan-
ning to less taxing draws of state-appropriate motor outputs from memory23. While our findings don’t identify 
this shift within individuals, they are nonetheless consistent with action selection being guided by comparably 
qualitatively different mechanisms between individuals; participants with superior skill, i.e., farther along motor-
learning trajectories, also used a less taxing policy to select actions.

Under similar less-is-more principles we additionally propose that a cognitive substrate of heuristics might 
be agency. In computational terms, the core difference between our task and paradigms previously exploring 
heuristics is the source (internal vs external) of its generative model. Trial outcomes in our task were determined 
solely by a joint function that integrated participants’ cursor selection and its subsequent execution. In other 
words, outcome variance was fully determined by parameters (decision and performance) generated intrinsi-
cally by participants. In contrast, forecasting and computerised emulations typically employ extrinsic generative 
models, where outcome variance is a function of parameters beyond participants’ control. Recent evidence from 
bandit tasks (a computerised emulation with an extrinsic generative model) further suggests that humans might 
overparameterise their choices when extrinsic forces determine their fate, resulting in apparently irrational 
summary behaviour such as probability matching40. However, probability matching dissipates as a function of 
increased agency, for example, with increased motor involvement in choice execution40. While it is premature to 
conclude that increased agency will globally drive the adoption of heuristics, our findings nonetheless predict that 
a low-skill individual (i.e., someone with low agency) will more likely reap utility by parameterising their choices 
more exhaustively in a selection-execution context, than by identifying a heuristic. This agency-parameterisation 
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interpretation is a potential bridge between our findings and a prominent theory in the heuristics literature 
(ecological rationality) that links heuristic utility with the structure of the environment41. In other words, certain 
heuristics will outperform more expensive parameterisation, depending on the settings in which they are used. 
Linking our findings with this theory simply requires expanding the scope of the term "settings" to incorporate 
variables governing skilful execution of action. In addition, a selection-execution framework that pits param-
eterisation against agency is also consistent with emerging associations in clinical computational work, where 
sequelae such as overthinking (in anxiety42) and rumination (proposed to reflect abnormal pruning of irrelevant 
environmental features for detailed evaluation, commonly observed in depression43) align with excess delibera-
tive model-based learning44.

We reveal additional evidence that planning dimensionality and skill might not simply evolve independently 
along separate strands of a learning multiplex. In our task, we were able to probe how the adoption of heuristics or 
complex planning aligned with the dimensions shaping both skill state and skill learning. As mentioned above, in 
terms of skill state, we first observed that the heuristic group’s skill advantage was localised to the spatial dimen-
sion, with the groups not differing in terms of temporal skill. The heuristic group was therefore more skilled 
solely in the core (spatial) feature that characterised the decision policy best describing their action-selection 
data. In a series of time-on-task analyses (skill learning) we additionally observed that the route group, likely 
employing more complex planning, demonstrated skill learning across a broad array of motor-control features, 
including learning in temporal task dynamics. The heuristic group, in contrast, only showed skill learning in 
either the spatial or overall reward realms, i.e., no skill learning in the temporal domain (corroborated in a follow-
up nonparametric analysis). Of note, a third nonplanner group, who never incorporated any state parameters 
into choice, and largely exploited the low-cost action, nonetheless improved across dimensions of motor-skill, 
including temporal skill (albeit only with the congruent cursor). In other words, the only group not showing 
credible plasticity in temporal skill learning was the heuristic group, i.e., the group who likely did not incorporate 
this information when selecting actions.

These combined findings support the idea that a yoked dimensionality might exist between policy governing 
the selection of actions and the skill shaping their subsequent execution, that is, the dimensions of information 
guiding action selection might be yoked to salient features in skill learning. In terms of a bottom-up framework, 
the spatial dominance of the heuristic group’s skill advantage, and likely spatial focus during action selection, sug-
gests that such dimensional yoking might be modulated by skill-first credit assignment45. In other words, higher 
execution proficiency stemming predominantly from spatial precision may have overweighted this dimension 
during planning. Previous research has indeed shown that human choice policy can be separately influenced by 
distinct dimensions of error depending on the reliability of their signals45–48, and that increased agency might 
determine whether policy integrates either motor or reward-based errors15.

An alternative top-down framework for the yoked dimensionality proposition is also supported by the appar-
ent absence of temporal learning in the heuristic group. Note that the route and heuristic groups did not differ in 
terms of overall temporal skill, just that the heuristic group uniquely showed no time-on-task evolution in this 
domain. An intriguing implication of this pattern of results is that a controller that localises a cardinal subset 
of information for making state-appropriate action selections might itself be able to influence controllers of 
what it considers superfluous features of sensorimotor error. Future behavioural enquiry into heuristics could 
employ advancements in the selection-execution framework to investigate and verify the yoked dimensionality 
hypothesis and explore its potential bottom-up and top-down underpinnings in more detail.

In addition to heuristic theory, the present study was inspired by an emerging body of work which emphasises 
the importance of constraints imposed on organisms by evolutionary development and the need to characterise 
behavioural substrates in paradigms that are more closely guided by the ecological challenges faced by our distant 
ancestors 5,18,19. In a recent review5, authors proposed that a framework for studying such "embodied decisions" 
should appreciate that a decision maker can have a potentially infinite number of options at a given moment, 
and further use a potentially infinite number of features or cues to guide their decision. Our selection-execution 
paradigm and DDM framework might therefore be considered a tractable simplification of an embodied decision 
framework, whereby a single selection (between two cursors) and subsequent execution (measured by spatial 
and temporal skill) was predominantly restricted to defined and finite spaces. While the DDM suited our goals 
of classifying participants into different planning groups, future work with a stronger emphasis on embodied 
decisions could explore action selection—either during initial cursor selection or during the less constrained 
space of action execution (i.e., the sequence of decisions governing each throttle pulse)—with the DDM as well 
as alternative models31,49. We likewise used two cursors that were either congruent or incongruent with respect 
to finger mapping to identify goal-oriented behaviour. However, in a broader sense, "congruity" might addition-
ally be of relevance to embodied-decision work, as it maps closely onto embodiment, i.e., higher congruity likely 
reflecting higher levels of embodiment. Congruity might potentially offer a manipulatable variable to distinguish 
features that may or may not have been established by evolutionary development. Modifications to both our 
paradigm and modeling framework might help future work exploring both the "what" and the "how" of decisions 
under a phylogenetic perspective5,7.

Two additional key outstanding questions relate to the robustness of heuristic adoption. The first question 
relates to robustness over time. Given the tendency for learning-related configurations in the human brain to 
vary more across rather than within individuals50, we employed a between-groups analytic approach inspired by 
an increasing body of work that uses behavioural profiles to cluster groups of individuals to increase robustness 
and reliability of hypothesis-specific brain activity34,51,52. While the present DDM parsimoniously distinguished 
human participants based on strategy-specific modulations of drift rate, parameters were necessarily static. Our 
data therefore cannot inform any within-subject hypotheses regarding heuristic adoption; whether, for example, 
the route group would eventually reduce planning dimensionality with increased time-on-task. Though sup-
plementary logistic models revealed the route group’s bias toward the low-cost cursor endured in later runs, 
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suggesting their planning strategy may have held firm across the experiment, we cannot confirm whether they 
demonstrated a robust phenotypic trait or a relatively slower evolution along a trajectory of policy formation 
mutually traversed by both them and the heuristic group. A second outstanding question relates to whether peo-
ple can learn to use heuristics or more complex planning if the situation dictates. We used minimal constraints 
when generating each trial’s start-goal pair (SG) and additionally imposed a grid around SGs that allowed for free 
movement during action execution. While we hypothesised that such task structure would assay more naturally 
occurring behavioural traits in our participants, these features created strong overlap between the heuristic and 
route-planning strategies in terms of trialwise reward yields. While not relevant for our analyses (which focused 
on strategy-specific difficulty, as opposed to strategy-specific reward), we cannot confirm whether individuals 
might learn one strategy over the other if justified by different reward yields. In summary, the outstanding ques-
tion of heuristic robustness, to learning arcs and reinforcement, are exciting new areas of research that can likely 
also be addressed with appropriate modifications on the current version of our selection-execution paradigm.

Conclusion
The association between decision heuristics and intrinsic skill has received scarce empirical attention due to the 
simplified nature of action in computerised goal-oriented tasks. Here we used a novel task emulating both the 
decisional and skill-based demands of goal-oriented behaviour in a dynamic environment. The DDM parsimoni-
ously identified human participants who likely adopted heuristics, and later modeling unambiguously aligned this 
lower-dimensional planning strategy with higher skill, consistent with less-is-more principles. We additionally 
observe that the intricacy of planning potentially maps onto the granularity of improvements in skill. Advance-
ments in the behavioural assays of actions selected and executed will hopefully uncover the underlying causality, 
learning dynamics and neural underpinnings giving rise to this possible yoked dimensionality.

Materials and methods
Participants and overview.  We report pooled data from two experiment cohorts, with 53 right-handed 
human participants recruited in total, via both word-of-mouth and the online participant-recruitment por-
tal at the University of California, Santa Barbara (UCSB). 34 participants reported as female and the group 
had an average (standard deviation) age of 21.9 (3.05) years. Participants performed the experiment either in a 
behavioural-testing suite (cohort 1, n = 16) or an fMRI context (cohort 2, n = 37). We report only behavioural 
data in the present paper from both groups. Visual angle subtended by stimuli was constant for the two cohorts. 
As an additional sanity check between the two samples, we performed a multinomial model and verified that 
neither cohort differed in terms of strategies used, i.e., the proportion of DDM group classifications (see Sup-
plementary Materials: Cohort-specific DDM group classifications). Participant remuneration was $10 ($20, cohort 
2) per hour baseline rate, with an additional $10 ($20, cohort 2) contingent on performance. Testing took place 
during a single session. Methods were performed in accordance with the relevant guidelines and regulations 
required by The Institutional Review Board at UCSB, who approved all procedures (Human Subject Committee 
protocol: 36-21-0405). All procedures were performed in accordance with the Declaration of Helsinki. Prior to 
participating, participants provided informed written consent. All stimuli were presented using freely available 
functions53,54 written in MATLAB code, and unless otherwise stated all analyses were also conducted using 
custom MATLAB scripts.

Action selection‑execution task: boatdock.  Paradigm.  Our task was a continuous, nonlinear ad-
aptation of the discrete grid-sail task23, extended such that reward yields require joint optimisation of action 
selection and action execution. All visual stimuli appear on a screen with a gray background (RGB[0,1] = [0.500, 
0.500, 0.500]). In each trial (Fig.  1a), they select one of two cursors, depicted by equilateral triangles (side 
length = 0.830°), to pilot from a start (S) to a goal (G), respectively depicted by a black (RGB[0,1] = [0, 0, 0]) and 
white (RGB[0, 1] = [1, 1, 1]) square (side length = 1.37°). The start-goal pair (SG) appears within a circular grid 
(radius = 3.82°) centred on the screen centre. Locations of the SG are drawn with uniform probability on each 
trial, constrained such that neither element falls within 0.320° of the grid perimeter, and their centres are at least 
0.957° apart.

Each cursor displaces in three deterministic directions (Fig. 1b), mapping onto the same three separate 
response buttons ("throttles") operated by the right hand for the duration of the experiment (Fig. 1c). One "con-
gruent" cursor displaces at angles 7π/6 (index finger), π/2 (middle finger), and 11π/6 (ring finger) in a reference 
frame where π/2 aligns with the vertical meridian of the screen (Fig. 1c). The other "incongruent" cursor displaces 
at angles 5π/6, π/6 and 3π/2, via one of two sets of spatially incongruent throttle-mappings, selected with uniform 
(p = 0.500) probability for each subject (an example mapping is in Fig. 1c). For the entire experiment, the congru-
ent and incongruent cursors are identified by a different colour, green RGB[0, 1] = [0, 1, 0] and blue RGB[0, 1] = [0, 
0, 1], determined with uniform (p = 0.500) probability before each participant’s session.

For every frame a single throttle is down, the cursor will accelerate in that direction (see Supplementary 
Materials for specific acceleration dynamics) and one unit of fuel is also subtracted from an allocation of 360 
units provided for each trial. Participants therefore have a total 6 s throttle time on each trial before fuel depletes 
(refresh rate = 60 Hz). Following a successful "dock" (see below) a screen informs participants of the fuel con-
served, expressed as a proportion of the starting tank. No other exogenous cue is provided to participants regard-
ing the size of the initial fuel allocation, or its rate of depletion.

Trial structure.  Each trial initiates with the action-selection period, signified by the appearance of an SG 
pair within a grid ("action selection", Fig. 1a). Participants have no time limit to select their desired cursor with 
the middle or index finger of their left hand, respectively using "a" or "z" of a standard keyboard (site 1) or but-
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tons 1 and 2 (i.e., the two most leftward) of a six-button bimanual response box55 (site 2). Finger-cursor mapping 
(i.e., index → congruent, middle → incongruent, or vice versa) is determined every twenty trials by uniform 
(p = 0.500) probability, prompted throughout the action-selection period by a silhouette of a hand (9.49°-by-
9.49°) below the grid, with the relevant cursor above the relevant finger. Once an action is selected, the action-
execution period immediately begins, signified by the silhouette prompt disappearing and the selected cursor 
spawning at the centre of S ("trial start", Fig. 1a). Participants now pilot the cursor from S to G with their right 
hand, using the "v" (index), "h" (middle) or "m" (ring) buttons on the keyboard (site 1) or buttons 4–6 on the 
right side of the response box (site 2). Action execution lasts until one of four possible trial outcomes. A success-
ful "dock" is achieved if the cursor enters a 0.479°-radius circular threshold (not visible to participants) centred 
on the centre of G, at a velocity no greater than 1.920°/s. Alternatively, three catastrophic errors can occur if par-
ticipants (i) run out of fuel, i.e., cumulative throttle time greater than 6 s; (ii) leave the grid; or (iii) enter the cir-
cular G threshold at a velocity greater than 1.920°/s. Once a trial outcome is achieved, a feedback screen imme-
diately informs participants of the outcome, respectively, "WELL DONE!", "OUT OF GAS!","LEFT THE GRID!" 
or "TOO FAST!", presented at the centre of the screen along with "SCORE: $", where $ is either the proportion of 
fuel preserved (for successful docks) or 0 for all catastrophic errors. The feedback remains on the screen for 1 s, 
followed by a blank grey inter-trial-interval screen lasting one, two or three seconds (determined on each trial 
with uniform probability p = 0.333). Participants performed 360 choice trials in total, portioned into six runs of 
60 trials. Interlaced between choice runs were 20 practice trials, on which scores do not count toward the final 
bonus, forcing ten trials with both the congruent and incongruent cursor in pseudorandom order.

Dependent variables.  To enumerate cursor-state suitability a simple spatial heuristic we computed the 
angles (in °) between the vector of a trial’s SG and each vector on the incongruent cursor. The vector creating the 
smallest angle (which we term the "offset") quantifies cursor suitability from this heuristic on a raw scale where 
values close to 0 reflect an SG perfectly aligning with one of the incongruent vectors and values close to 60 reflect 
an SG perfectly aligning with one of the congruent vectors.

To enumerate action values derived from more complex planning we first computed forward simulations of 
the optimal routes on each (simulation procedure described in Supplementary materials). We subtract the total 
frames spent accelerating during the optimal route (λ) from the starting fuel bank of 360 units to estimate the 
maximum reward obtainable on a given trial.

We enumerated reaction time (RT) for action selection as the time elapsed between the time of the first frame 
of the action-selection screen (described above) and the time of cursor selection. We coded state-appropriate 
selection as incongruent cursor on trials with offset < 30 and congruent cursor on trials with offset > 30 (state-
appropriate cursor selection did not differ depending on which action value (route vs heuristic) is computed).

We enumerated skill performance on each trial in terms of reward, spatial action execution and temporal 
action execution. Reward was the amount of fuel conserved. All modeling of reward used raw units (i.e., on a 
scale of 0 to 360) to allow Gaussian likelihood functions, however for clarity in reported results we present find-
ings as a proportion of the tank preserved (from 0 to 1). Spatial action execution was the number of direction 
changes, i.e., a count of how many times a different throttle was pressed relative to the one previous. Temporal 
action execution was the difference between the cursor’s maximum velocity recorded during action-execution 
(in °/s), and the final velocity (in °/s) taken at the moment the cursor crossed the circular threshold around G, 
normalised by the distance covered by the SG (in °).

Data analysis.  Computational modeling.  We modeled action planning leading up to cursor selection with 
variants of a standard drift–diffusion model55–58. The full models included five free parameters: high-difficulty 
drift rate μ1, low-difficulty drift rate μ2, boundary B, congruency bias bC, and nondecision time t0. The bounda-
ries for congruent and incongruent choices were defined as B and -B, respectively, and the starting point for the 
stochastic process was bCB. Parameters were necessarily constrained as follows: 0 ≤ μ1 ≤ μ2, μ2 ≥ 0, B > 0, -1 < bC < 1, 
and t0 ≥ 0. Noise was represented as the standard deviation of diffusion with a fixed scaling parameter σ = 0.1.

We compared three types of models: two route-planning models (with one or two drift rates), two heuristic 
models (with one or two drift rates), and the null (i.e., nonplanning) model. For route-planning models, we 
determined difficulty by dividing trialwise differences in reward yields (between the simulated optimal routes 
for either cursor; Fig. 2e) into five bins. The same bin edges were used for each participant, and were selected 
to maximise parity across bins in terms of trial-count (approximately 72 trials per participant per bin). For the 
heuristic models, we determined difficulty by dividing trialwise offsets into five bins (Fig. 2e). We again used the 
same bin edges for each participant, selected to maximise parity across bins in terms of trial-count (approximately 
72 trials per participant per bin). In each case, the five difficulty bins corresponded to drift rates of −μ2, −μ1, 0, 
μ1, and μ2. We constrained single-drift-rate models such that μ1 = μ2 to minimise penalties for additional degrees 
of freedom, and the null model such that μ1 = μ2 = 0 to represent insensitivity to the onscreen information. The 
null model with no drift rate is therefore primarily driven by a participant’s congruency bias rather than any 
accumulation of state-appropriate evidence on a given trial.

We fitted candidate models to empirical distributions of choices and RTs at the level of individual subjects 
using maximum‑likelihood estimation and the “chi-square” fitting method59. We calculated the frequencies of 
either choice and the 10, 30, 50, 70, and 90% quantiles (i.e., six bins) of their respective RT distributions for each 
difficulty level. Free parameters were optimised with respect to overall goodness of fit for a given subject using 
iterations of the Nelder‑Mead simplex algorithm with randomised seeding60. We adjusted for model complexity 
when comparing models that differed in degrees of freedom using the Akaike information criterion with cor-
rection for finite sample size (AICc)35,36.
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Three participant groups were defined by the results of model fitting following penalisation. The “heuristic” 
and “route” groups included those who were best fitted by a heuristic or route-planning model, respectively, 
according to the AICc. Assignment to the "nonplanner" group meant that adding free parameters for planning did 
not yield a significant improvement in goodness of fit relative to the null model containing no sensitivity to either 
heuristic or route-based enumeration of cursor suitability on each SG. We also fitted the models using twofold 
cross-validation across split halves of the data for additional confirmation at the expense of statistical power.

Bayesian models.  We sampled all Bayesian posterior distributions using No U-Turn sampling (NUTS) 
Hamiltonian Monte Carlo, implemented with the PyMC3 package61 in custom Python scripts. Unless otherwise 
specified, each model’s posterior distributions were sampled across four chains of 10,000 samples (40,000 total), 
with an additional initial 10,000 samples per chain (40,000 total) discarded after tuning the sampler’s step-size 
to an acceptance threshold of 0.95 (80,000 samples combined), with further convergence criteria that no chains 
contain any divergences and no posterior’s R̂ value, estimating the ratio of variance within the n = 4 chains to the 
variance of the pooled chains, greater than 1 (see:62). Unless otherwise stated, dependent variables were z-score 
normalised across participants prior to fits. We calculated minimum-width Bayesian credible intervals of rel-
evant posteriors from their chains, using the default settings for Highest Density Interval (HDI) calculation in 
the arviz package63.

We fitted summary models to variables that could first be summarised across trials. The model for median 
RT assumed individual participant (n) values (y) were characterised by a Gaussian likelihood function, i.e., yn
~Ɲ(μ, Σ). Median RT variables were z-score normalised across all subjects prior to fitting, and we respectively 
assigned μ and Σ an uninformed Gaussian and half-Gaussian prior: μ ~ Ɲ(0,10) and Σ ~ halfƝ(10). We report 
the expected value ( E(x)) and highest density interval (HDI(x)) of μ, i.e., group-mean RT.

Three separate binomial models then estimated summaries of behaviour as measured by three binomial 
variables p(congruent cursor), p(appropriate cursor) and p(catastrophic error). Each of these summary models 
used a Binomial likelihood function y ~ Bin(θ,t), where y and t are n-element vectors, respectively enumerating 
the number of observed instances reported by each individual participant (n) and their total number of trials (t). 
In each model, we assigned θ an uninformed prior from the beta distribution: θ ~ Beta(α = 1,β = 1). In each case 
we report the expected value ( E(x)) and highest density interval (HDI(x)) of θ, i.e., respectively, group-mean 
p(congruent cursor), p(appropriate cursor) and p(catastrophic error).

After using the DDM to classify participants into groups (heuristic, route, nonplanner) we then ran modified 
versions of the above models, to compute group-specific posteriors (reported in Table 1). The median RT model 
assumed individual participant (n) values (y) for median RT were characterised by a separate Gaussian likelihood 
function, depending on n’s group-allocation (g(n): heuristic, route, nonplanner), i.e., yn~Ɲ(μ g(n),Σg(n)). Median 
RT values were z-score normalised (across all subjects) prior to fitting, and we respectively assigned each μ,g(n) 
and Σg(n) an uninformed Gaussian and half-Gaussian prior: μ g(n) ~ Ɲ(0,10) and Σg(n) ~ halfƝ(10). We report the 
expected value ( E(x)) and highest density interval (HDI(x)) of μ g(n), i.e., group-specific median RT.

Three separate binomial models then estimated summaries of behaviour as measured by three binomial 
variables: p(congruent cursor), p(appropriate cursor) and p(catastrophic error). For the n(g) participants in 
each group (g), each summary model used a Binomial likelihood function yg ~ Bin(θg,tg), where yg and tg are 
n(g)-element vectors, respectively enumerating the number of observed instances reported by each individual 
participant in a group (yg) and their total number of trials (tg). In each model, we assigned each θg an unin-
formed prior from the beta distribution: θg ~ Beta(α = 1,β = 1). In each case we report the expected value ( E(x)) 
and highest density interval (HDI(x)) of θg, i.e., respectively, group-specific p(congruent cursor), p(appropriate 
cursor) and p(catastrophic error).

We then analyzed group-specific DDM parameters (reported in Table 1). A single Gaussian model summa-
rised seven variables in total. First, the three variables applicable to each group identified by the DDM framework, 
specifically: boundary—B, congruency bias—bC, and nondecision time—t0. In addition, the three variables 
applicable only to the route and heuristic groups, specifically: drift rate, high difficulty—μ1, drift rate, low dif-
ficulty- μ2 and sensitivity—S. This model assumed individual participant (n) values (y) for each variable (v) were 
characterised by a separate Gaussian likelihood function, further depending on n’s group-allocation (g(n): route, 
heuristic or nonplanner), i.e., yn,v~Ɲ(μ v,g(n),Σv,g(n)). Each variable was z-score normalised separately (but across 
all subjects) prior to fitting, and we respectively assigned each Μv,g(n) and Σv,g(n) an uninformed Gaussian and 
half-Gaussian prior: μ v,g(n) ~ Ɲ(0, 10) and Σv,g(n) ~ halfƝ(10). In each case, we report the expected value ( E(x)) 
and highest density interval (HDI(x)) of μ v,g(n, i.e., group-specific value of each DDM parameter.

We next fitted hierarchical models that imposed hierarchical structures to summarise trialwise measures 
within each participant with participant-level posteriors that were themselves constrained by a relevant hierar-
chical parameter. We first used a hierarchical Bayesian binomial model to estimate the credible ranges of group-
specific state-appropriate choice (p(appropriate cursor)), separately for each run. The hierarchical structure used 
Binomial likelihood functions to summarise the number of state-appropriate cursor selections (y) made by each 
participant (n) for all trials (t) in a given run (r), yn,r ~ Bin(θn,r, tn,r). The model constrained θn,r posteriors with 
separate hierarchical group (g(n)) and run-specific Beta distributions, i.e.: θn,r ~ Beta(αg(n),r, βg(n),r). Each αg(n),r 
and βg(n),r were assigned uninformed priors from a half-Student’s T distribution, i.e.: αg(n),r ~ HalfStudentT(10, 
10) and βg(n),r ~ HalfStudentT(10, 10), bounded to never draw values of αg(n),r = 0 or βg(n),r = 0. Run-specific group-
level deterministic posterior estimates of state-appropriate choice ( θg(n),r ) were calculated by drawing 10,000 
independent samples (k) from relevant αg(n),r and βg(n),r posteriors and computing the mean of the resulting kth 
Beta distribution, i.e., θg(n),r,k = αg(n),r,k / (αg(n),r,k + βg(n),r,k). We report the expected value ( E(x)) and highest density 
interval (HDI(x)) of θg(n),r , i.e., group-by-run-specific p(appropriate cursor).
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We then used two separate hierarchical Bayesian Gaussian models to estimate the credible ranges of group-
mean performance in the two continuous action-execution variables (reward and temporal skill), separately for 
each run, and separately again for each cursor. In each model, the hierarchical structure used Gaussian likelihood 
functions to summarise each (n) participant’s trialwise measures across all trials in a given run (r), separately 
for each cursor (c), i.e.: yn,r,c~Ɲ(x n,r,c,exp(σn,r,c)). The model constrained x n,r,c and σn,r,c posteriors with separate 
hierarchical group (g(n)), run (r) and choice-specific (c) Gaussian distributions, i.e.: x n,r,c ~ Ɲ(μg(n),r,c,Σg(n),r,c) and 
σn,r,c ~ Ɲ(φ g(n),r,c, ψ g(n),r,c). Each μg(n),r,c and φ g(n),r,c were assigned uninformed Gaussian priors (~ Ɲ(0,10)), while 
each Σg(n),r,c and ψ g(n),r,c were assigned uninformed half-Gaussian priors (~ halfƝ(10)). We report the expected 
value ( E(x)) and highest density interval (HDI(x)) of μg(n),r,c, i.e., group-by-run-by-choice-specific reward yields. 
Note that the model for reward was fitted to a continuous measure, scoring fuel conserved on a scale of 0 to 
360, but for clarity, we adjusted runwise and collapsed HDIs (division by 360), also prior to computing any 
HDIs related to between-comparisons, to express results as a proportion of fuel preserved. Time-on-task betas, 
however, relate to unadjusted posteriors.

We used a hierarchical Bayesian Poisson model to estimate the credible ranges of group-mean performance 
in spatial skill, separately for each run, and separately again for each cursor. In each model, the hierarchical 
structure used Poisson likelihood functions to summarise each (n) participant’s trialwise direction changes across 
all trials in a given run (r), separately for each cursor (c), i.e.: yn,r,c~Pois(exp(x n,r,c)). The model constrained x 
n,r,c posteriors with separate hierarchical group (g(n)), run (r) and cursor-specific (c) Gaussian distributions, 
i.e.: x n,r,c ~ Ɲ(μg(n),r,c,Σg(n),r,c). μg(n),r,c and Σg(n),r,c were respectively assigned uninformed Gaussian (~ Ɲ(0,10)) and 
half-Gaussian priors (~ halfƝ(10)). We report the expected value ( E(x)) and highest density interval (HDI(x)) 
of μg(n),r,c, i.e., group-by-run-by-choice-specific direction changes. For clarity in reported results, we re-adjusted 
runwise and collapsed HDIs (exponential transform), also prior to computing any HDIs related to between-
comparisons, to discount the use of exp(x n,r,c) in the likelihood function. Time-on-task betas, however, relate 
to unadjusted posteriors.

For both the hierarchical Gaussian and Poisson skill models, separately for each group (g) and choice (c), 
we enumerated deterministic posteriors of overall skill level by averaging each posterior sample across runs, 
i.e., for each posterior sample, μg,c = 1/6 

∑6
r=1µg ,r,c . We then enumerated deterministic linear and logarithmic 

time-on-task effects bg,c by drawing posterior samples from μg,r,c. Specifically, on each (k) of 40,000 draws, we 
computed the kth column of bg,c (bg,c,k), where bg,c,k = (XTX)−1XTYg,c,k. Here, Yg,c,k is a six-element column vector 
containing an independent draw from each run (r) of μg,r,c and matrix X is a three-column matrix respectively 
containing six constant terms (1), z-scored linear x ∈ (1, 2,…, 6) and z-scored logarithmic x ∈ (ln(1), ln(2), …, 
ln(6)) regressors. The second and third rows of resulting 3-by-40,000 matrix bg,c respectively contained deter-
ministic posteriors for linear and logarithmic time-on-task effects. Where logarithmic time-on-task effects were 
credible (0 ∉ HDI), we considered that group-by-cursor time-on-task effect to be logarithmic even if a linear 
effect was also observed. Note, as specified above, that in reported results, we present the HDIs of time-on-task 
coefficients (linear and logarithmic) fitted to unadjusted runwise posteriors, i.e., before we made any adjustment 
to posteriors for intuitive presentation of runwise/collapsed HDIs.

For the individual-participant-level nonparametric analysis of temporal skill, we computed the median of each 
x n,r,c posterior from the relevant Gaussian skill model. Separately for each cursor we regressed the six-element 
vector of participant’s run-specific median values, first as a function of an intercept and a linear time-on-task 
regressor (z-scored linear x ∈ (1, 2,…,6)), and then as a function of an intercept and a z-scored logarithmic 
regressor x ∈ (ln(1), ln(2), …, ln(6)). If either model’s regressor (x) was significant (determined by 95% coefficient 
confidence intervals not containing 0), we considered that participant time-on-task+ for that cursor and skill 
variable. We compared proportions of time-on-task+ participants (y) between groups (g), separately for each 
cursor, by fitting Binomial likelihood function yg ~ Binomial(θg, ng), assigning each θg an uninformed prior from 
the beta distribution: θg ~ Beta(α = 1, β = 1).

In all above cases, we consider strong evidence of credible effects as follows: for comparison of parameters to 
criterion values (e.g., a regression coefficient above 0, or a likelihood above 0.50, etc.) we required the entire HDI 
of that parameter to not include the criterion value. For comparison of two parameters we required the HDI of 
the deterministic distribution of their difference (posterior A—posterior B) to not contain 0. Note that two HDIs 
might overlap, but that this deterministic distribution of difference may yet still not contain 0.

Verifying DDM classification of heuristic and route groups with segmentation interaction.  We 
tested whether the heuristic and complex planning elicited similar RT for SGs where the optimal solution was 
a single linear route from the start to the goal (single segment), but different RT where the optimal solution 
requires some kind of turn or zig-zag (multiple segment), i.e., where complex-planning demands likely become 
disproportionately greater than heuristic demands. On all trials where the optimal selection was the congruent 
cursor (i.e., offset > 30° or route-planning score > 0), we computed median RT for each participant separately 
for trials where our simulations (see Supplementary Materials: Optimal route simulations) returned a single-
segment solution and for trials with a multiple-segment solution (see Fig. 2i). We submitted this to a two-way 
ANOVA with factors group (heuristic, route) and segmentation (single, multiple) with significant effects probed 
using post-hoc tests applying Tukey correction. We also repeated this analysis for trials where the state-appro-
priate selection was the incongruent cursor.

Data availability
All data required to interpret, replicate and build upon the findings reported in this article will be available from 
time of publication at http://​www.​githh​ub.​com/​dundo​nnm.
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